Posts

PRINT PDF

Print Friendly and PDF

A line L1 passes through points A (3,3), B(5-1) and it is bisected by L2. Determine the equation of L2 in the form y = mx + c (3mks) - ATIKA SCHOOL

A line L1 passes through points A (3,3), B(5-1) and it is bisected by L2. Determine the equation of L2 in the form y = mx + c (3mks) - ATIKA SCHOOL : A line L1 passes through points A (3,3), B(5-1) and it is bisected by L2. Determine the equation of L2 in the form y = mx + c (3mks)

Two people X and Y have goats. X has more goats than Y and if Y gives X one of his goats, X will have twice as many goats as Y. If X gives Y one of his goats, they will have an equal number of goats. How goats does each have. (3mks) - ATIKA SCHOOL

Two people X and Y have goats. X has more goats than Y and if Y gives X one of his goats, X will have twice as many goats as Y. If X gives Y one of his goats, they will have an equal number of goats. How goats does each have. (3mks) - ATIKA SCHOOL : Two people X and Y have goats. X has more goats than Y and if Y gives X one of his goats, X will have twice as many goats as Y. If X gives Y one of his goats, they will have an equal number of goats. How goats does each have. (3mks)

Four interior angles of a hexagon are 100, 140, 125 and 105. The fifth interior angle is four times the sixth. Find, in degrees the fifth interior angle. (3mks) - ATIKA SCHOOL

Four interior angles of a hexagon are 100, 140, 125 and 105. The fifth interior angle is four times the sixth. Find, in degrees the fifth interior angle. (3mks) - ATIKA SCHOOL : Four interior angles of a hexagon are 100, 140, 125 and 105. The fifth interior angle is four times the sixth. Find, in degrees the fifth interior angle. (3mks)

Use tables of reciprocals and squares roots to evaluate to 4 significant figures. (4mks) - ATIKA SCHOOL

Use tables of reciprocals and squares roots to evaluate to 4 significant figures. (4mks) - ATIKA SCHOOL : Use tables of reciprocals and squares roots to evaluate to 4 significant figures. (4mks)

The figure below is a cross-section of a model of a swimming pool of length 30cm. - ATIKA SCHOOL

The figure below is a cross-section of a model of a swimming pool of length 30cm. - ATIKA SCHOOL : The figure below is a cross-section of a model of a swimming pool of length 30cm.

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com : KCSE Mathematics Topical Questions for all forms 1, 2, 3 and 4. Kenyan students are delighted to access for free

Five men each working 10hrs a day take two days to cultivate one acre of land. How long will two men each working six hours a day, take to cultivate three acres of land. (3mks) - ATIKA SCHOOL

Five men each working 10hrs a day take two days to cultivate one acre of land. How long will two men each working six hours a day, take to cultivate three acres of land. (3mks) - ATIKA SCHOOL : Five men each working 10hrs a day take two days to cultivate one acre of land. How long will two men each working six hours a day, take to cultivate three acres of land. (3mks)

​Using a ruler and a pair of compasses only construct triangle ABC such that AB= 4.5cm, BC = 8.1cm and angle CBA = 60^0. Measure angle CAB. (3mks) - ATIKA SCHOOL

​Using a ruler and a pair of compasses only construct triangle ABC such that AB= 4.5cm, BC = 8.1cm and angle CBA = 60^0. Measure angle CAB. (3mks) - ATIKA SCHOOL : ​Using a ruler and a pair of compasses only construct triangle ABC such that AB= 4.5cm, BC = 8.1cm and angle CBA = 60^0. Measure angle CAB. (3mks)

Find the value of y in the equation - ATIKA SCHOOL

Find the value of y in the equation - ATIKA SCHOOL : Find the value of y in the equation

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com : KCSE Mathematics Topical Questions for all forms 1, 2, 3 and 4. Kenyan students are delighted to access for free

DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2). - ATIKA SCHOOL

DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2). - ATIKA SCHOOL : DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2).

DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2). - ATIKA SCHOOL

DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2). - ATIKA SCHOOL : DRAW THE QUADRILATERAL WITH VERTICES AT A (-6,-1) B (-6,-4) C (3,-7) AND D (3,2).

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com

ATIKA SCHOOL - KCSE Mathematics Topical Questions - Atikaschool.com : KCSE Mathematics Topical Questions for all forms 1, 2, 3 and 4. Kenyan students are delighted to access for free

In the figure below, O is the centre of the circle which passes through the points T,C and D. Line TC is parallel to OD and line ATB is a tangent to the circle at T. Angle DOC = 38^0. Calculate the size of angle CTB - ATIKA SCHOOL

In the figure below, O is the centre of the circle which passes through the points T,C and D. Line TC is parallel to OD and line ATB is a tangent to the circle at T. Angle DOC = 38^0. Calculate the size of angle CTB - ATIKA SCHOOL : In the figure below, O is the centre of the circle which passes through the points T,C and D. Line TC is parallel to OD and line ATB is a tangent to the circle at T. Angle DOC = 38^0. Calculate the size of angle CTB

WITHOUT USING A CALCULATOR OR MATHEMATICAL TABLES - ATIKA SCHOOL

WITHOUT USING A CALCULATOR OR MATHEMATICAL TABLES - ATIKA SCHOOL : WITHOUT USING A CALCULATOR OR MATHEMATICAL TABLES

​A particle moves along a straight line such that its displacement S metres from a given point is S = t^3-5t^2 + 3t + 4. where t is time in seconds. - ATIKA SCHOOL

​A particle moves along a straight line such that its displacement S metres from a given point is S = t^3-5t^2 + 3t + 4. where t is time in seconds. - ATIKA SCHOOL : ​A particle moves along a straight line such that its displacement S metres from a given point is S = t^3-5t^2 + 3t + 4. where t is time in seconds.

A group of people planned to contribute equally towards a water project which needed Ksh. 2, 000,000 to complete. However 40 members of the group withdrew from the project. As a result each of the remaining members were to contribute Ksh. 2,500 more. - ATIKA SCHOOL

A group of people planned to contribute equally towards a water project which needed Ksh. 2, 000,000 to complete. However 40 members of the group withdrew from the project. As a result each of the remaining members were to contribute Ksh. 2,500 more. - ATIKA SCHOOL : A group of people planned to contribute equally towards a water project which needed Ksh. 2, 000,000 to complete. However 40 members of the group withdrew from the project. As a result each of the remaining members were to contribute Ksh. 2,500 more.

​In the figure below, points L, M,N and P are on the circumference of a circle centre O. LON is a diameter of the circle PL = PN and angle NLM = 20^0

​In the figure below, points L, M,N and P are on the circumference of a circle centre O. LON is a diameter of the circle PL = PN and angle NLM = 20^0 : ​In the figure below, points L, M,N and P are on the circumference of a circle centre O. LON is a diameter of the circle PL = PN and angle NLM = 20^0

The height of tree seedlings in a nursery were measured and recorded as in the table below - ATIKA SCHOOL

The height of tree seedlings in a nursery were measured and recorded as in the table below - ATIKA SCHOOL : The height of tree seedlings in a nursery were measured and recorded as in the table below

Two grades of coffee one costing sh.42 per kilogram and the other costing sh.47 per kilogram are to be mixed in order to produce a blend worth sh.46 per kilogram in what proportion should they be mixed.

Two grades of coffee one costing sh.42 per kilogram and the other costing sh.47 per kilogram are to be mixed in order to produce a blend worth sh.46 per kilogram in what proportion should they be mixed. : Two grades of coffee one costing sh.42 per kilogram and the other costing sh.47 per kilogram are to be mixed in order to produce a blend worth sh.46 per kilogram in what proportion should they be mixed.

​A quantity P varies partly as Q and partly as the square root of Q, given that P=30 when Q=9, and P=14 when Q=16. Find P when Q=36.

​A quantity P varies partly as Q and partly as the square root of Q, given that P=30 when Q=9, and P=14 when Q=16. Find P when Q=36. : ​A quantity P varies partly as Q and partly as the square root of Q, given that P=30 when Q=9, and P=14 when Q=16. Find P when Q=36.

​Seven people can build five huts in 30 days. Find the number of people, working at the same rate that will build 9 similar huts in 27days. (3mks) - ATIKA SCHOOL

​Seven people can build five huts in 30 days. Find the number of people, working at the same rate that will build 9 similar huts in 27days. (3mks) - ATIKA SCHOOL : ​Seven people can build five huts in 30 days. Find the number of people, working at the same rate that will build 9 similar huts in 27days. (3mks)

A and B are two points on earth’s surface and on latitude 400 N. The two points are on the longitude 500W and 1300E respectively. Calculate the distance from A to B along a parallel of latitude in kilometers. (2mks) - ATIKA SCHOOL

A and B are two points on earth’s surface and on latitude 400 N. The two points are on the longitude 500W and 1300E respectively. Calculate the distance from A to B along a parallel of latitude in kilometers. (2mks) - ATIKA SCHOOL : A and B are two points on earth’s surface and on latitude 400 N. The two points are on the longitude 500W and 1300E respectively. Calculate the distance from A to B along a parallel of latitude in kilometers. (2mks)

Find the inverse of the matrix - ATIKA SCHOOL

Find the inverse of the matrix - ATIKA SCHOOL : Find the inverse of the matrix

Evaluate - ATIKA SCHOOL

Evaluate - ATIKA SCHOOL : Evaluate

A bag contains 5 red, 4 white and 3 blue beads. Three beads are selected at random without replacement. Find the probability that

A bag contains 5 red, 4 white and 3 blue beads. Three beads are selected at random without replacement. Find the probability that : A bag contains 5 red, 4 white and 3 blue beads. Three beads are selected at random without replacement. Find the probability that

The figure below shows solid frustum of a pyramid with a square top of side 6cm and a square base of side 10cm. The slant edge of the frustum is 8cm.

The figure below shows solid frustum of a pyramid with a square top of side 6cm and a square base of side 10cm. The slant edge of the frustum is 8cm. : The figure below shows solid frustum of a pyramid with a square top of side 6cm and a square base of side 10cm. The slant edge of the frustum is 8cm.

Using a ruler and pair of compasses only construct triangle ABC in which AB = 6.5cm, BC= 5.0cm and angle ABC = 600. Measure AC

Using a ruler and pair of compasses only construct triangle ABC in which AB = 6.5cm, BC= 5.0cm and angle ABC = 600. Measure AC : Using a ruler and pair of compasses only construct triangle ABC in which AB = 6.5cm, BC= 5.0cm and angle ABC = 600. Measure AC

KCSE MATHEMATICS QUESTION AND ANSWER ON INCOME TAX MODEL13052023002

KCSE MATHEMATICS QUESTION AND ANSWER ON INCOME TAX MODEL13052023002 : KCSE MATHEMATICS QUESTION AND ANSWER ON INCOME TAX MODEL13052023002

The curve of the equation y = x+ 2x2, has x = ½ and x = 0 as x-intercepts. The area bounded by the x-axis, x = ½ and x = 3 is shown by the sketch below.

The curve of the equation y = x+ 2x2, has x = ½ and x = 0 as x-intercepts. The area bounded by the x-axis, x = ½ and x = 3 is shown by the sketch below. : The curve of the equation y = x+ 2x2, has x = ½ and x = 0 as x-intercepts. The area bounded by the x-axis, x = ½ and x = 3 is shown by the sketch below.

Fill in the table below to 2 decimal places for the graph of y = sin x and y = 2sin (x-30) for the range – 180 £ x £180 (2mks)

Fill in the table below to 2 decimal places for the graph of y = sin x and y = 2sin (x-30) for the range – 180 £ x £180 (2mks) : Fill in the table below to 2 decimal places for the graph of y = sin x and y = 2sin (x-30) for the range – 180 £ x £180 (2mks)

A tailor makes two types of garments A and B. Garment A requires 3 metres of material while garment B requires 2 ½ metres of material. The tailor uses not more than 600 metres of material daily in making both garments. He must make not more than 100 garme

A tailor makes two types of garments A and B. Garment A requires 3 metres of material while garment B requires 2 ½ metres of material. The tailor uses not more than 600 metres of material daily in making both garments. He must make not more than 100 garme : A tailor makes two types of garments A and B. Garment A requires 3 metres of material while garment B requires 2 ½ metres of material. The tailor uses not more than 600 metres of material daily in making both garments. He must make not more than 100 garme

Category: Linear Programming

Category: Linear Programming : Diet expert makes up a food production for sale by mixing two ingredients N and S. One kilogram of N contains 25 units of protein and 30 units of vitamins. One kilogram of S contains 50 units of...

GIVEN THAT POSITION VECTORS OF POINTS A AND B ARE

GIVEN THAT POSITION VECTORS OF POINTS A AND B ARE : GIVEN THAT POSITION VECTORS OF POINTS A AND B ARE

THE TABLE BELOW SHOWS THE NUMBER OF FAULTY BALLS FROM 40 SAMPLES

THE TABLE BELOW SHOWS THE NUMBER OF FAULTY BALLS FROM 40 SAMPLES : THE TABLE BELOW SHOWS THE NUMBER OF FAULTY BALLS FROM 40 SAMPLES

BY RATIONALIZING THE DENOMINATOR, EVALUATE THE FOLLOWING SURDS.

BY RATIONALIZING THE DENOMINATOR, EVALUATE THE FOLLOWING SURDS. : BY RATIONALIZING THE DENOMINATOR, EVALUATE THE FOLLOWING SURDS.

FACTORIZE COMPLETELY

FACTORIZE COMPLETELY : FACTORIZE COMPLETELY

FIND THE EQUATION OF THE PERPENDICULAR BISECTOR AB, GIVEN THAT A (2, -4) AND B (8, 8)

FIND THE EQUATION OF THE PERPENDICULAR BISECTOR AB, GIVEN THAT A (2, -4) AND B (8, 8) : FIND THE EQUATION OF THE PERPENDICULAR BISECTOR AB, GIVEN THAT A (2, -4) AND B (8, 8)

KIRATU EARNED A BASIC SALARY OF KSH.21000 THAT MONTH. IN ADDITION HE GOT A HOUSE ALLOWANCE OF KSH.12000 AND MEDICAL ALLOWANCE OF KSH.3600. HE HAD A LIFE INSURANCE POLICY FOR WHICH HE PAID KSH.1800P.M.

KIRATU EARNED A BASIC SALARY OF KSH.21000 THAT MONTH. IN ADDITION HE GOT A HOUSE ALLOWANCE OF KSH.12000 AND MEDICAL ALLOWANCE OF KSH.3600. HE HAD A LIFE INSURANCE POLICY FOR WHICH HE PAID KSH.1800P.M. : KIRATU EARNED A BASIC SALARY OF KSH.21000 THAT MONTH. IN ADDITION HE GOT A HOUSE ALLOWANCE OF KSH.12000 AND MEDICAL ALLOWANCE OF KSH.3600. HE HAD A LIFE INSURANCE POLICY FOR WHICH HE PAID KSH.1800P.M.

A Kenyan tourist in US borrowed 10,000 US dollars to pay for his son’s examination.

A Kenyan tourist in US borrowed 10,000 US dollars to pay for his son’s examination. : A Kenyan tourist in US borrowed 10,000 US dollars to pay for his son’s examination.

THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS)

THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS) : THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS)

THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS)

THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS) : THE LCM OF THREE NUMBERS IS 7920 AND THEIR GCD IS 12. TWO OF THE NUMBERS ARE 48 AND 264. USING FACTOR METHOD DETERMINE THE THIRD LEAST POSSIBLE NUMBER. (3MKS)

WORK OUT THE FOLLOWING GIVING YOUR ANSWER AS A MIXED NUMBER IN ITS SIMPLEST FORM

WORK OUT THE FOLLOWING GIVING YOUR ANSWER AS A MIXED NUMBER IN ITS SIMPLEST FORM : WORK OUT THE FOLLOWING GIVING YOUR ANSWER AS A MIXED NUMBER IN ITS SIMPLEST FORM

KCSE Mathematics Topical Questions - Atikaschool.com

KCSE Mathematics Topical Questions - Atikaschool.com : KCSE Mathematics Topical Questions for all forms 1, 2, 3 and 4. Kenyan students are delighted to access for free

KCSE REVISION QUESTION AND ANSWERS ON LINEAR PROGRAMMING MODEL05052023004

KCSE REVISION QUESTION AND ANSWERS ON LINEAR PROGRAMMING MODEL05052023004 : KCSE REVISION QUESTION AND ANSWERS ON LINEAR PROGRAMMING MODEL05052023004

KCSE REVISION QUESTION AND ANSWERS ON MATRICES AND TRANSFORMATION MODEL05052023003

KCSE REVISION QUESTION AND ANSWERS ON MATRICES AND TRANSFORMATION MODEL05052023003 : KCSE REVISION QUESTION AND ANSWERS ON MATRICES AND TRANSFORMATION MODEL05052023003

KCSE REVISION QUESTION AND ANSWERS ON GRAPHICAL METHODS MODEL05052023002

KCSE REVISION QUESTION AND ANSWERS ON GRAPHICAL METHODS MODEL05052023002 : KCSE REVISION QUESTION AND ANSWERS ON GRAPHICAL METHODS MODEL05052023002

KCSE REVISION QUESTION AND ANSWERS ON INTEGRATION, DIFFERENTIATION AND GRAPHICAL METHODS MODEL05052023001

KCSE REVISION QUESTION AND ANSWERS ON INTEGRATION, DIFFERENTIATION AND GRAPHICAL METHODS MODEL05052023001 : KCSE REVISION QUESTION AND ANSWERS ON INTEGRATION, DIFFERENTIATION AND GRAPHICAL METHODS MODEL05052023001

KCSE MATHEMATICS QUESTION AND ANSWER ON TRIGONOMETRY 1 MODEL04052023002

KCSE MATHEMATICS QUESTION AND ANSWER ON TRIGONOMETRY 1 MODEL04052023002 : KCSE MATHEMATICS QUESTION AND ANSWER ON TRIGONOMETRY 1 MODEL04052023002

KCSE QUESTION ON INCOME TAX MODEL04052023001

KCSE QUESTION ON INCOME TAX MODEL04052023001 : KCSE QUESTION ON INCOME TAX MODEL04052023001

THE PROBABILITIES THAT MUENI, AUMA AND WANJIKU ARE TIME BARRED TO VOTE FOR THEIR FAVORITE PRESIDENTIAL CANDIDATES ARE 1/4, 1/3 AND 3/4 RESPECTIVELY. ON THE DAY OF VOTING, WHAT IS THE PROBABILITY THAT;

THE PROBABILITIES THAT MUENI, AUMA AND WANJIKU ARE TIME BARRED TO VOTE FOR THEIR FAVORITE PRESIDENTIAL CANDIDATES ARE 1/4, 1/3 AND 3/4 RESPECTIVELY. ON THE DAY OF VOTING, WHAT IS THE PROBABILITY THAT; : THE PROBABILITIES THAT MUENI, AUMA AND WANJIKU ARE TIME BARRED TO VOTE FOR THEIR FAVORITE PRESIDENTIAL CANDIDATES ARE 1/4, 1/3 AND 3/4 RESPECTIVELY. ON THE DAY OF VOTING, WHAT IS THE PROBABILITY THAT;

THE FIGURE BELOW IS A RIGHT PYRAMID OF RECTANGULAR BASE OF LENGTH 12CM AND WIDTH 9CM. THE SLANTING EDGE HAS A LENGTH OF 19.5CM.

THE FIGURE BELOW IS A RIGHT PYRAMID OF RECTANGULAR BASE OF LENGTH 12CM AND WIDTH 9CM. THE SLANTING EDGE HAS A LENGTH OF 19.5CM. : THE FIGURE BELOW IS A RIGHT PYRAMID OF RECTANGULAR BASE OF LENGTH 12CM AND WIDTH 9CM. THE SLANTING EDGE HAS A LENGTH OF 19.5CM.

​BAG X CONTAINS 2 GREEN MARBLES AND 8 YELLOW MARBLES. BAG Y CONTAINS 4 GREEN MARBLES AND 5 YELLOW MARBLES. A BAG IS SELECTED AT RANDOM AND TWO MARBLES DRAWN ONE AT A TIME WITHOUT REPLACEMENT.

​BAG X CONTAINS 2 GREEN MARBLES AND 8 YELLOW MARBLES. BAG Y CONTAINS 4 GREEN MARBLES AND 5 YELLOW MARBLES. A BAG IS SELECTED AT RANDOM AND TWO MARBLES DRAWN ONE AT A TIME WITHOUT REPLACEMENT. : ​BAG X CONTAINS 2 GREEN MARBLES AND 8 YELLOW MARBLES. BAG Y CONTAINS 4 GREEN MARBLES AND 5 YELLOW MARBLES. A BAG IS SELECTED AT RANDOM AND TWO MARBLES DRAWN ONE AT A TIME WITHOUT REPLACEMENT.

A QUADRILATERAL ABCD HAS VERTICES A(-3, 4), B(-2, 7), C(1, 5) AND D(0, 2). THE QUADRILATERAL IS ROTATED THROUGH -90° ABOUT THE ORIGIN TO A¹B¹C¹D¹. A¹B¹C¹D¹ IS THEN REFLECTED ON THE LINE Y + C = 0 TO GET A¹¹B¹¹C¹¹D¹¹.

A QUADRILATERAL ABCD HAS VERTICES A(-3, 4), B(-2, 7), C(1, 5) AND D(0, 2). THE QUADRILATERAL IS ROTATED THROUGH -90° ABOUT THE ORIGIN TO A¹B¹C¹D¹. A¹B¹C¹D¹ IS THEN REFLECTED ON THE LINE Y + C = 0 TO GET A¹¹B¹¹C¹¹D¹¹. : A QUADRILATERAL ABCD HAS VERTICES A(-3, 4), B(-2, 7), C(1, 5) AND D(0, 2). THE QUADRILATERAL IS ROTATED THROUGH -90° ABOUT THE ORIGIN TO A¹B¹C¹D¹. A¹B¹C¹D¹ IS THEN REFLECTED ON THE LINE Y + C = 0 TO GET A¹¹B¹¹C¹¹D¹¹.

A CAR STARTS FROM REST AND BUILDS UP A SPEED OF 40M/S IN 1 MIN 40 SECONDS. IT THEN TRAVELS AT THIS SPEED FOR 5 MINUTES. BRAKES ARE THEN APPLIED AND THE CAR IS BROUGHT TO A HALT IN 2 MINUTES.

A CAR STARTS FROM REST AND BUILDS UP A SPEED OF 40M/S IN 1 MIN 40 SECONDS. IT THEN TRAVELS AT THIS SPEED FOR 5 MINUTES. BRAKES ARE THEN APPLIED AND THE CAR IS BROUGHT TO A HALT IN 2 MINUTES. : A CAR STARTS FROM REST AND BUILDS UP A SPEED OF 40M/S IN 1 MIN 40 SECONDS. IT THEN TRAVELS AT THIS SPEED FOR 5 MINUTES. BRAKES ARE THEN APPLIED AND THE CAR IS BROUGHT TO A HALT IN 2 MINUTES.

​Symbolism - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Symbolism - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Symbolism - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Sarcasm - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Sarcasm - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Sarcasm - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Vivid description - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Vivid description - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Vivid description - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Flashback -FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Flashback -FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Flashback -FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Story within a story - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Story within a story - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Story within a story - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Ideophones - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

​Ideophones - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES : ​Ideophones - FATHERS OF NATIONS ​​STYLES AND STYLISTIC DEVICES

FATHERS OF NATIONS STUDY GUIDE

FATHERS OF NATIONS STUDY GUIDE : study guide of fathers of nations novel and setbook, pdf download, price and summary

​STYLES AND STYLISTIC DEVICES

​STYLES AND STYLISTIC DEVICES : ​STYLES AND STYLISTIC DEVICES - Dialogue

​Fiona Mckenzie

​Fiona Mckenzie : ​Fiona Mckenzie FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

​President Wasiwasi Wesiga

​President Wasiwasi Wesiga : ​President Wasiwasi Wesiga ​FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

Rahmah Mahmoud

Rahmah Mahmoud : Rahmah Mahmoud ​​FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

PHYSICS PAPER 3 QUESTION PAPER, CONFIDENTIAL AND MARKING SCHEME MODEL13042022001

PHYSICS PAPER 3 QUESTION PAPER, CONFIDENTIAL AND MARKING SCHEME MODEL13042022001 : PHYSICS PAPER 3 QUESTION PAPER, CONFIDENTIAL AND MARKING SCHEME MODEL13042022001

​Engineer Seif Tahir

​Engineer Seif Tahir : ​Engineer Seif Tahir FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

​Comrade Ngobile Melusi

​Comrade Ngobile Melusi : ​Comrade Ngobile Melusi FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

​Comrade Ngobile Melusi

​Comrade Ngobile Melusi : ​Comrade Ngobile Melusi FATHERS OF NATIONS CHARACTER AND CHARACTERISATION

ADTHIS

SHARE

sponsors

Latest Questions with Answers

Contact Form

Name

Email *

Message *